A smooth zero-entropy diffeomorphism whose product with itself is loosely Bernoulli

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometric Extensions of Zero Entropy Z Loosely Bernoulli Transformations

In this paper we discuss loosely Bernoulli for Zd actions. In particular, we prove that extensions of zero entropy, ergodic, loosely Bernoulli Zd actions are also loosely Bernoulli.

متن کامل

The Pascal adic transformation is loosely Bernoulli

The Pascal adic transformation is one of the simplest examples of adic transformations. We recall its construction by cutting and stacking and prove that it is loosely Bernoulli.  2003 Elsevier SAS. All rights reserved. Résumé La transformation Pascal adique est un des exemples les plus simples de transformations adiques. Nous rappelons sa construction par découpage et empilement et montrons q...

متن کامل

A loosely Bernoulli counterexample machine

In Rudolph’s paper on minimal self joinings [7] he proves that a rank one mixing transformation constructed by Ornstein [5] can be used as the building block for many ergodic theoretical counterexamples. In this paper we show that Ornstein’s transformation can be altered to create a general method for producing zero entropy, loosely Bernoulli counterexamples. This paper answers a question posed...

متن کامل

An Endomorphism Whose Square Is Bernoulli

One of the corollaries of Ornstein’s isomorphism theorem is that if (Y, S, ν) is an invertible measure preserving transformation and (Y, S, ν) is isomorphic to a Bernoulli shift then (Y, S, ν) is isomorphic to a Bernoulli shift. In this paper we show that noninvertible transformations do not share this property. We do this by exhibiting a uniformly 2-1 endomorphism (X, σ, μ) which is not isomor...

متن کامل

A smooth Gaussian-Kronecker diffeomorphism

We construct a smooth Gaussian-Kronecker diffeomorphism T , on ”× [0, 1], where [0, 1] is the Hilbert cube. To obtain this diffeomorphism, we adapt a construction by De La Rue [6], which uses transformations of the planar Brownian motion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal d'Analyse Mathématique

سال: 2020

ISSN: 0021-7670,1565-8538

DOI: 10.1007/s11854-020-0108-5